login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151692 G.f.: Prod_{ k >= 2 } (1 + x^(2^k-1) + x^(2^k)). 10
1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 1, 3, 3, 1, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 1, 3, 3, 1, 0, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 2, 4, 6, 4, 1, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 1, 3, 3, 1, 0, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 2, 4, 6, 4, 1, 0, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Table of n, a(n) for n=0..104.

David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS

EXAMPLE

Contribution from Omar E. Pol, Jun 09 2009: (Start)

Triangle begins:

1;

0,0;

1,1,0,0;

1,1,0,1,2,1,0,0;

1,1,0,1,2,1,0,1,2,1,1,3,3,1,0,0;

1,1,0,1,2,1,0,1,2,1,1,3,3,1,0,1,2,1,1,3,3,1,1,3,3,2,4,6,4,1,0,0;

1,1,0,1,2,1,0,1,2,1,1,3,3,1,0,1,2,1,1,3,3,1,1,3,3,2,4,6,4,1,0,1,2,1,1,3,3,...

(End)

CROSSREFS

For generating functions of the form Prod_{k>=c} (1+a*x^(2^k-1)+b*x^2^k)) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694

Cf. A160573, A151552.

Cf. A000079. [From Omar E. Pol, Jun 09 2009]

Sequence in context: A321750 A056929 A304096 * A280829 A303942 A321928

Adjacent sequences:  A151689 A151690 A151691 * A151693 A151694 A151695

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:15 EDT 2019. Contains 328267 sequences. (Running on oeis4.)