This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151666 Number of partitions of n into distinct powers of 4. 18
 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.] Lukasz Merta, Composition inverses of the variations of the Baum-Sweet sequence, arXiv:1803.00292 [math.NT], 2018. See q(n) (with different offset) p. 9. N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS FORMULA G.f.: Prod_{k >= 0 } (1+x^(4^k)). Exponents give A000695. G.f. A(x) satisfies: A(x) = (1 + x) * A(x^4). - Ilya Gutkovskiy, Aug 12 2019 MATHEMATICA terms = 105; kmax = Log[4, terms] // Ceiling; CoefficientList[Product[1+x^(4^k), {k, 0, kmax}] + O[x]^(kmax terms), x][[1 ;; terms]] (* Jean-François Alcover, Jul 31 2018 *) PROG (Haskell) a151666 n = fromEnum (n < 2 || m < 2 && a151666 n' == 1)    where (n', m) = divMod n 4 -- Reinhard Zumkeller, Dec 03 2011 CROSSREFS For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674. Cf. A039966, A151667, A000695. Sequence in context: A157686 A181115 A284527 * A214284 A191747 A280933 Adjacent sequences:  A151663 A151664 A151665 * A151667 A151668 A151669 KEYWORD nonn AUTHOR N. J. A. Sloane, May 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 15:57 EDT 2019. Contains 328318 sequences. (Running on oeis4.)