OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (792, -290862, 65984412, -10391950167, 1210552073172, -108511757620112, 7687874707991352, -438801842634100047, 20463952984838053792, -788123497343025648150, 25270669669098512733228, -678837532745427806095113, 15349821535045369264190388, -293201738441368171406215308, 4743013718033546118227289728, -65086051105034316579789479088, 758320289765381459651144067648, -7502862242647817789019372638528, 63008516937463808482656194692608, -448617173455769595833933418138624, 2703212640048390870750946882682880, -13751269076145632994683610138624000, 58868414966953079922480694640640000, -211239879261162169366157386547200000, 632288694113916466698811382169600000, -1569443030321576212767530483712000000, 3207541662867661775437679820800000000, -5350838506010097270908387328000000000, 7207961277223719420234301440000000000, -7733433557377208506751385600000000000, 6489065439953990845464576000000000000, -4151465243031120893706240000000000000, 1949961396576407938662400000000000000, -632475674323703562240000000000000000, 126348400886324133888000000000000000, -11698926007992975360000000000000000).
FORMULA
a(n) = Sum_{j=0..9} (-1)^(j+1)*binomial(3*n+1, 9-j)*(binomial(j+1, 3))^n. - G. C. Greubel, Mar 26 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1, 3])^n, {j, 0, k+2}];
Table[T[n, 7], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1, 3))^n for j in (0..k+2) )
[T(n, 7) for n in (1..30)] # G. C. Greubel, Mar 26 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved