login
A151632
Number of permutations of 3 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order.
2
0, 9, 405, 6750, 83736, 922347, 9639783, 98361900, 992660346, 9967494609, 99857394225, 999379243674, 9997315646220, 99988457276295, 999950607877131, 9999789546603672, 99999106646803758, 999996220428781005, 9999984057081398901, 99999932929790707494
OFFSET
1,2
LINKS
FORMULA
a(n) = 10^n - (3*n + 1)*4^n + 3*n*(3*n + 1)/2. - Andrew Howroyd, May 06 2020
From Colin Barker, Jul 17 2020: (Start)
G.f.: 9*x^2*(1 + 24*x - 42*x^2 - 64*x^3) / ((1 - x)^3*(1 - 4*x)^2*(1 - 10*x)).
a(n) = 21*a(n-1) - 153*a(n-2) + 503*a(n-3) - 786*a(n-4) + 576*a(n-5) - 160*a(n-6) for n>6.
(End)
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j)*Binomial[3*n+1, k-j+2]*(Binomial[j+1, 3])^n, {j, 0, k+2}];
Table[T[n, 2], {n, 30}] (* G. C. Greubel, Mar 26 2022 *)
PROG
(PARI) a(n) = {10^n - (3*n + 1)*4^n + 3*n*(3*n + 1)/2} \\ Andrew Howroyd, May 06 2020
(PARI) concat(0, Vec(9*x^2*(1 + 24*x - 42*x^2 - 64*x^3) / ((1 - x)^3*(1 - 4*x)^2*(1 - 10*x)) + O(x^40))) \\ Colin Barker, Jul 17 2020
(Sage)
@CachedFunction
def T(n, k): return sum( (-1)^(k-j)*binomial(3*n+1, k-j+2)*(binomial(j+1, 3))^n for j in (0..k+2) )
[T(n, 2) for n in (1..30)] # G. C. Greubel, Mar 26 2022
CROSSREFS
Column k=2 of A174266.
Sequence in context: A063876 A063156 A058850 * A035024 A179433 A091061
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved