login
A151624
Number of permutations of 2 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order.
5
0, 1, 48, 603, 5158, 37257, 247236, 1568215, 9703890, 59226357, 358722928, 2163496611, 13017647646, 78225458401, 469740168924, 2819689366191, 16922139539626, 101545622110989, 609314411814024, 3656015481903355, 21936500845191030, 131620291694585721
OFFSET
1,3
LINKS
FORMULA
a(n) = 6^n - (2*n + 1)*3^n + n*(2*n + 1). - Andrew Howroyd, May 06 2020
From Colin Barker, Jul 16 2020: (Start)
G.f.: x^2*(1 + 33*x - 33*x^2 - 81*x^3) / ((1 - x)^3*(1 - 3*x)^2*(1 - 6*x)).
a(n) = 15*a(n-1) - 84*a(n-2) + 226*a(n-3) - 309*a(n-4) + 207*a(n-5) - 54*a(n-6) for n>6.
(End)
E.g.f.: x*(3+2*x)*exp(x) - (1+6*x)*exp(3*x) + exp(6*x). - G. C. Greubel, Jun 19 2022
MATHEMATICA
Table[6^n -(2*n+1)*3^n +n*(2*n+1), {n, 40}] (* G. C. Greubel, Jun 19 2022 *)
PROG
(PARI) a(n) = {6^n - (2*n + 1)*3^n + n*(2*n + 1)} \\ Andrew Howroyd, May 06 2020
(PARI) Vec(x^2*(1 + 33*x - 33*x^2 - 81*x^3) / ((1 - x)^3*(1 - 3*x)^2*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Jul 16 2020
(Magma) [(&+[(-1)^j*Binomial(2*n+1, 2-j)*Binomial(j+2, 2)^n: j in [0..2]]): n in [1..40]]; // G. C. Greubel, Jun 19 2022
(SageMath) [6^n -(2*n+1)*3^n +binomial(2*n+1, 2) for n in (1..40)] # G. C. Greubel, Jun 19 2022
CROSSREFS
Column k=2 of A154283.
Sequence in context: A190601 A179404 A171343 * A187611 A362235 A160286
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved