login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151543 Smallest precursor of n-th cycle in the "Recurring Digital Invariant Variant" problem. 4
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 59, 108, 119, 136, 138, 147, 177, 389, 407, 559, 709, 999, 1118, 1157, 1346, 4479, 11227, 12399, 22779, 30489, 100666, 127779, 577999, 677779, 1000259, 1001458, 1007889, 1035889, 1124577, 1188888 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The problem is the following:

a) choose a number N

b) let k be the number of digits in N

c) raise each digit of N to the k-th power and add the results

d) call the new number N and repeat

Example:

a) 14 = N

b) k = 2

c) 1^2 + 4^2 = 17

d) 17 = N

e) k = 2

f) 1^2 + 7^2 = 50

g) 50 = N

... etc.

Here is the trajectory of 14:

14 -> 1^2 + 4^2 = 17

17 -> 1^2 + 7^2 = 50

50 -> 5^2 + 0^2 = 25

25 -> 2^2 + 5^2 = 29

29 -> 2^2 + 9^2 = 85

85 -> 8^2 + 5^2 = 89

89 -> 8^2 + 9^2 = 145

145 -> 1^3 + 4^3 + 5^3 = 190

190 -> 1^3 + 9^3 + 0^3 = 730

730 -> 7^3 + 3^3 + 0^3 = 370

370 -> 3^3 + 7^3 + 0^3 = 370 (fixed point)

The question is, what are the cycles that appear in the trajectories?

The following table of the first 34 cycles (arranged in order of the smallest precursor) was calculated by Hans Havermann:

The format for each cycle is:

Index {the smallest precursor (the current sequence), the cycle length, {the cycle itself with the smallest element of the cycle first - see A151544}}:

1 { 1, 1, {1}}

2 { 2, 1, {2}}

3 { 3, 1, {3}}

4 { 4, 1, {4}}

5 { 5, 1, {5}}

6 { 6, 1, {6}}

7 { 7, 1, {7}}

8 { 8, 1, {8}}

9 { 9, 1, {9}}

10 { 14, 1, {370}}

11 { 59, 3, {160, 217, 352}}

12 { 108, 1, {153}}

13 { 119, 1, {371}}

14 { 136, 2, {136, 244}}

15 { 138, 10, {259, 862, 736, 586, 853, 664, 496, 1009, 6562, 3233}}

16 { 147, 14, {18829, 124618, 312962, 578955, 958109, 1340652, 376761, 329340, 537059, 681069, 886898, 1626673, 1665667, 2021413}}

17 { 177, 2, {58618, 76438}}

18 { 389, 6, {2929, 13154, 4394, 7154, 3283, 4274}}

19 { 407, 1, {407}}

20 { 559, 3, {282595, 824963, 845130}}

21 { 709, 1, {8208}}

22 { 999, 2, {2178, 6514}}

23 { 1118, 4, {10933, 59536, 73318, 50062}}

24 { 1157, 12, {5908997, 17347727, 23131558, 17571846, 30442597, 49340036, 44870531, 23070276, 13216291, 44733413, 5981093, 11743403}}

25 { 1346, 1, {1634}}

26 { 4479, 1, {9474}}

27 { 11227, 1, {54748}}

28 { 12399, 1, {32164049651}}

29 { 22779, 1, {92727}}

30 { 30489, 1, {93084}}

31 {100666, 12, {1680387, 5299971, 15250704, 6611844, 2689794, 12783081, 39326052, 45130596, 45579685, 68505765, 27073124, 11602212}}

32 {127779, 1, {548834}}

33 {577999, 1, {4210818}}

34 {677779, 3, {2767918, 8807272, 5841646}}

35 {1000259, 1, {9926315}}

36 {1001458, 6, {2191663, 5345158, 2350099, 9646378, 8282107, 5018104}}

37 {1007889, 1, {9800817}}

38 {1035889, 2, {8139850, 9057586}}

39 {1124577, 1, {1741725}}

40 {1188888, 1, {24678051}}

41 {2055779, 2, {2755907, 6586433}}

42 {2566699, 1, {472335975}}

43 {4888888, 10, {180450907, 564207094, 440329717, 468672187, 369560719, 837322786, 359260756, 451855933, 527799103, 857521513}}

44 {10135679, 1, {24678050}}

45 {10146899, 1, {146511208}}

46 {10233389, 1, {88593477}}

47 {10266888, 7, {1139785743, 5136409024, 3559173428, 4863700423, 1418899523, 9131926726, 7377037502}}

48 {14489999, 3, {180975193, 951385123, 525584347}}

49 {14788889, 1, {912985153}}

50 {20248999, 1, {534494836}}

51 {155999999, 2, {277668893, 756738746}}

Any number < 10^9 will fall into one of these 51 cycles.

The name "Recurring Digital Invariant Variant" was suggested by Mensanator on the rec.puzzles web site.

LINKS

Hans Havermann, Table of n, a(n) for n = 1..51

Eric Angelini, A Recurring Digital Invariant Variant

E. Angelini, A Recurring Digital Invariant Variant [Cached, with permission]

CROSSREFS

Cf. A005188, A151544, A157714.

Sequence in context: A282765 A033081 A032579 * A222261 A242415 A242420

Adjacent sequences:  A151540 A151541 A151542 * A151544 A151545 A151546

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, May 15 2009 based on email from Eric Angelini, Feb 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 15:01 EST 2017. Contains 295939 sequences.