OFFSET
1,2
COMMENTS
Also counts 1-sided polyrects.
LINKS
John Mason, Table of n, a(n) for n = 1..50
Ed Pegg, Jr., Illustrations of polyforms
Eric Weisstein's World of Mathematics, Polyrhomb
Eric Weisstein's World of Mathematics, Polyrect
Wikipedia, Polyomino
FORMULA
MATHEMATICA
A[n_] := With[{n6 = StringPadLeft[ToString[n], 6, "0"]}, Cases[ Import[ "https://oeis.org/A" <> n6 <> "/b" <> n6 <> ".txt", "Table"], {_, _}][[All, 2]]];
A006749 = A@6749; A006746 = A@6746; A006748 = A@6748; A006747 = A@6747; A056877 = A@56877; A056878 = A@56878; A144553 = A@144553; A142886 = A@142886;
a[n_] := 4*A006749[[n]] + 2*A006746[[n]] + 2*A006748[[n]] + 4*A006747[[n]] + 2*A056877[[n]] + 2*A056878[[n]] + 2*A144553[[n]] + A142886[[n + 1]];
a /@ Range[28] (* Jean-François Alcover, Jan 03 2020 *)
CROSSREFS
Polyominoes by group of symmetries relating shapes considered the same: A000105 (all symmetries), A001168 (translations only), A000988 (rotations and translations), A056780 (horizontal and vertical reflections, rotations of order 2 and translations), A056783 (reflections in either diagonal, rotations of order 2 and translations), A151522 (rotations of order 2 and translations), A151525 (reflections in a horizontal line and translations), A182645 (reflections in a NE-SW diagonal line and translations)
KEYWORD
nonn,hard
AUTHOR
Ed Pegg Jr, May 13 2009
EXTENSIONS
Edited and a(13)-a(18) by Joseph Myers, Nov 24 2010
a(19)-a(28) from Andrew Howroyd, Dec 04 2018
STATUS
approved