OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387, 2008.
FORMULA
G.f.: ((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3). - Mark van Hoeij, Aug 20 2014
a(n) = sqrt(-1/3)*(-2)^n*hypergeom([1/2, n+4],[2],4/3)/(n+1). - Mark van Hoeij, Aug 23 2014
Conjecture: +(n+3)*a(n) -4*n*a(n-1) +12*(-n+1)*a(n-2)=0. - R. J. Mathar, Jun 14 2016
MAPLE
A151483 := proc(n)
coeftayl(((1-6*x)*(1-4*x-12*x^2)^(1/2)-4*x^2+8*x-1)/(32*x^3), x=0, n);
end proc:
seq(A151483(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CoefficientList[Series[((1 - 6x)(1 - 4x - 12x^2)^(1/2) - 4x^2 + 8x - 1)/(32 x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 23 2014 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved