login
A151482
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)}.
0
1, 1, 3, 8, 28, 93, 359, 1332, 5400, 21460, 89844, 373197, 1600682, 6853799, 29959582, 131136020, 582046108, 2590492619, 11642984469, 52500378935, 238444506195, 1086573825315, 4978762863254, 22885862700737, 105659026464329, 489244652473495, 2273483149291092, 10593076963481771, 49504781707787203
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A148854 A148855 A148856 * A241585 A273162 A148857
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved