%I #11 Aug 27 2014 15:15:03
%S 1,1,3,8,30,104,418,1619,6811,27995,121479,518165,2298497,10057101,
%T 45342297,202127226,922674852,4172053826,19231818364,87941092870,
%U 408591525432,1885356748718,8816855295648,40987943515892,192726338718178,901557225420892,4258807073126730,20028060258669392
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 1), (0, 1), (1, -1), (1, 1)}.
%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, ArXiv 0810.4387 [math.CO], 2008.
%F G.f.: Int(Int(2+Int(12*(1-x)*(1-2*Int((1-2*x-15*x^2)^(3/2)*((16*x^2+1)*(4680*x^6-1400*x^5-185*x^4-521*x^3+123*x^2+9*x-2)*hypergeom([9/4, 11/4],[3],64*x^2*(1+x^2)/(16*x^2+1)^2)-6*(-180*x^6+644*x^5+458*x^4-1622*x^3 +356*x^2-26*x-2)*x^2*hypergeom([11/4, 13/4],[4],64*x^2*(1+x^2)/(16*x^2+1)^2))/((16*x^2+1)^(11/2)*(1-x)^2),x))/(1-2*x-15*x^2)^(5/2),x),x),x)/((1+x)*x^2). - _Mark van Hoeij_, Aug 27 2014
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008