%I #7 Jan 01 2024 02:41:38
%S 1,0,3,3,25,58,302,1000,4572,17759,78402,327746,1445868,6280646,
%T 27957450,124210073,558853524,2520567027,11454557485,52237087015,
%U 239457095960,1101503925205,5086830804442,23565165397859,109513332449237,510337183030398,2384498982840799,11168045680153978,52425419487599722
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 1), (0, -1), (1, 0), (1, 1)}.
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008