%I #6 Dec 27 2023 21:32:57
%S 1,0,3,4,26,80,387,1596,7518,34656,167310,813384,4040212,20285408,
%T 103195235,530042604,2748206006,14362312640,75609109594,400620871608,
%U 2135307326508,11442213676512,61615122713550,333282537518040,1810222600024044,9869776566646080,54002852920884540,296449512451881360
%N Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 0), (0, -1), (0, 1), (1, 0), (1, 1)}.
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008