login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151366 Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0)} 0
1, 0, 2, 2, 12, 30, 130, 462, 1946, 7980, 34776, 153120, 694056, 3194334, 14971242, 71133062, 342500730, 1667918824, 8208038124, 40772105244, 204270936480, 1031413134960, 5245260798960, 26850869456400, 138289429433200, 716247599547360, 3729128330979200, 19510354349803200, 102540704879774160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..28.

M. Bousquet-Melou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.

FORMULA

G.f. ((2*x+1)*(hypergeom([-2/3, -1/3],[1],27*x^2*(2*x+1))+4*x*hypergeom([-1/3, 1/3],[2],27*x^2*(2*x+1)))/(3*x+1)-1-3*x-5*x^2)/(3*x^3).  - Mark van Hoeij, Aug 17 2014

MATHEMATICA

aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[aux[0, 0, n], {n, 0, 25}]

CROSSREFS

Sequence in context: A130306 A199127 A093044 * A184944 A033886 A185144

Adjacent sequences:  A151363 A151364 A151365 * A151367 A151368 A151369

KEYWORD

nonn,walk

AUTHOR

Manuel Kauers, Nov 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 11:34 EST 2015. Contains 265236 sequences.