The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151327 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 1), (-1, 0), (0, 1), (1, -1), (1, 0), (1, 1)} 1
 1, 3, 15, 76, 413, 2281, 12889, 73541, 423921, 2458383, 14335834, 83922633, 492956132, 2903156720, 17135951352, 101330250964, 600140389918, 3559105598556, 21131319068601, 125585737386758, 747013179830622, 4446753991483192, 26487831271866795, 157871848076357815, 941434100552046728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..400 A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009. M. Bousquet-MÃ©lou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009. MAPLE F:= proc(x, y, n) option remember; local t, s, u;      t:= 0:      if n <= min(x, y) then return 6^n fi;      for s in [[-1, 1], [-1, 0], [0, 1], [1, -1], [1, 0], [1, 1]] do        u:= [x, y]+s;        if min(u) >= 0 then t:= t + procname(op(u), n-1) fi      od;      t end proc: seq(F(0, 0, n), n=0..40); # Robert Israel, Jun 05 2018 MATHEMATICA aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}] CROSSREFS Sequence in context: A037647 A019477 A019478 * A125700 A037766 A037654 Adjacent sequences:  A151324 A151325 A151326 * A151328 A151329 A151330 KEYWORD nonn,walk AUTHOR Manuel Kauers, Nov 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)