login
A151312
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (-1, 0), (1, -1), (1, 0), (1, 1)}.
1
1, 2, 10, 39, 210, 960, 5340, 26250, 148610, 761796, 4360356, 22971102, 132469260, 711426144, 4124979144, 22471772895, 130833575730, 720642479700, 4209268283220, 23389011317958, 136971640993044, 766537623135648, 4498668129173400, 25325478605719656, 148897823229533196, 842422760884567800
OFFSET
0,2
REFERENCES
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017; https://specfun.inria.fr/bostan/HDR.pdf
LINKS
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017)
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
FORMULA
G.f.: Int(hypergeom([3/2,3/2],[2],16*x/((2*x+1)*(6*x+1)))*(1-2*x)/((2*x+1)*(6*x+1))^(3/2),x)/x. - Mark van Hoeij, Aug 14 2014
MAPLE
Gf:= Int(hypergeom([3/2, 3/2], [2], 16*x/((2*x+1)*(6*x+1)))*(1-2*x)/((2*x+1)*(6*x+1))^(3/2), x)/x:
S:= series(Gf, x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Aug 14 2014
# The following programs a0 and a1 give the even and odd terms:
a0 := proc(n) options remember;
if n=0 then 1 elif n=1 then 10
else 2*(-18*(2*n-3)^2*a0(n-2)+(2*n-1)*(20*n^2-2*n-3)*a0(n-1)/(2*n+1))/n^2
fi
end:
a1 := proc(n) options remember;
if n=0 then 2 elif n=1 then 39 else
2*(-18*(2*n-1)^2*(1-1/n^2)*a1(n-2)+(20*n^2+18*n+1)*a1(n-1))/(n+1)^2
fi
end:
seq(op([a0(n), a1(n)]), n=0..50); # - Mark van Hoeij, Jul 15 2022
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
CROSSREFS
Sequence in context: A295521 A165814 A151311 * A253590 A184433 A339090
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved