login
A151024
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 0, -1), (1, 0, 1), (1, 1, 1)}.
0
1, 2, 10, 40, 180, 816, 3792, 17632, 83328, 395264, 1885136, 9029264, 43422272, 209338720, 1011990848, 4903283072, 23802136448, 115736418752, 563644374976, 2748655850624, 13420190153856, 65596430108544, 320950723146368, 1571775100079104, 7703853624527872, 37788741680153600, 185492325169078272
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A351511 A151023 A344501 * A151025 A333799 A030534
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved