login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150885
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 1), (1, -1, 1), (1, 0, 1), (1, 1, -1), (1, 1, 0)}.
0
1, 2, 8, 33, 150, 687, 3260, 15535, 75200, 365065, 1786315, 8758688, 43134180, 212743678, 1052015189, 5207997317, 25824475180, 128160594114, 636719791109, 3165313770397, 15747425122161, 78381360717633, 390343913148965, 1944666404124979, 9691986000325862, 48317912738860882, 240952575436395991
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150882 A150883 A150884 * A150886 A150887 A150888
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved