login
A150859
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, -1, 1), (1, 0, 1), (1, 1, -1), (1, 1, 0)}
0
1, 2, 8, 32, 142, 634, 2942, 13738, 65314, 312020, 1504974, 7285354, 35468060, 173142920, 848281038, 4164533860, 20495009166, 101020632516, 498786103290, 2465717891964, 12204316293920, 60463441910018, 299831990086244, 1487941240912540, 7389327076908030, 36718165846040112, 182557836405387776
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A105483 A150857 A150858 * A150860 A308368 A072243
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved