login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A150840
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, -1, 0), (0, 1, -1), (0, 1, 0), (1, 1, 1)}.
0
1, 2, 8, 32, 138, 604, 2703, 12315, 56663, 263196, 1230758, 5788966, 27366503, 129887780, 618733335, 2956325427, 14163969859, 68023437777, 327380888885, 1578644180769, 7625361651529, 36890862105021, 178729294951629, 867041001587589, 4211192195399009, 20476247078858780, 99664557968320422
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[i, 1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150837 A150838 A150839 * A150841 A150842 A274483
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved