login
A150664
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 1, 1), (0, 0, 1), (1, -1, 1), (1, 1, -1), (1, 1, 0)}.
0
1, 2, 7, 29, 129, 598, 2835, 13644, 66319, 324630, 1597025, 7885507, 39041941, 193699338, 962518555, 4788722705, 23847568557, 118848810902, 592658978457, 2956802946625, 14757301904357, 73676132704272, 367922865754725, 1837709064234518, 9180591215488059, 45869654339178428, 229208480098828445
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A150663 A054321 A344502 * A193040 A200755 A132262
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved