login
A149121
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, -1), (1, -1, 0), (1, 1, 1)}.
0
1, 1, 4, 9, 34, 94, 368, 1131, 4398, 14236, 55984, 188576, 740000, 2551442, 10067316, 35443271, 139712062, 498416468, 1971107420, 7122847862, 28153558524, 102603939062, 406431688608, 1494188962016, 5916706122284, 21880889654074, 86779037261076, 322951842854822, 1280521402780940, 4786287052515392
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A219769 A308038 A096531 * A149122 A149123 A149124
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved