login
A149074
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 0), (1, 0, 0)}.
0
1, 1, 4, 7, 28, 58, 242, 551, 2400, 5818, 26002, 65756, 298554, 778282, 3578788, 9550923, 44367836, 120636622, 564755938, 1558850020, 7343234714, 20522712330, 97185278732, 274480115654, 1305547201530, 3720481542438, 17762267500172, 51011556761536, 244324015102150, 706438505936006, 3393076155967758
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A339393 A371456 A128386 * A149075 A149076 A123767
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved