Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jan 23 2018 14:56:04
%S 1,1,3,11,42,175,755,3318,14897,67934,313320,1457186,6834042,32249951,
%T 152963363,728772478,3485974666,16728898237,80509755123,388466875840,
%U 1878628301984,9102952302638,44187666497748,214844863711924,1046105281413402,5100271714845970,24896244561277645,121660675201413859
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 1, 1), (1, -1, 1), (1, 1, -1)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">arXiv:0811.2899 [math.CO]</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008