%I #4 Mar 29 2024 19:48:55
%S 1,1,3,9,29,103,367,1337,5023,18933,72019,277595,1072317,4161419,
%T 16257277,63604357,249494725,982307399,3871371275,15281854703,
%U 60457884995,239348796175,948543450125,3764377613819,14946670066195,59387715592641,236183780014071,939637420512623,3740066423029775
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 1), (0, -1, 1), (1, 1, -1), (1, 1, 0)}.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008