login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148855
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 1, -1), (1, -1, 0), (1, 0, 1), (1, 1, -1)}.
0
1, 1, 3, 8, 28, 91, 357, 1316, 5290, 21137, 87905, 364034, 1561508, 6634870, 29020984, 126046450, 559099248, 2469187687, 11084955557, 49574819823, 224824650873, 1015850981738, 4645039658822, 21172021133032, 97474508273022, 447579684854340, 2072778400834434, 9577522969707324, 44582241806569082
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148852 A148853 A148854 * A148856 A151482 A241585
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved