login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A148755
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, -1), (-1, 1, 1), (1, -1, 0), (1, 0, 1)}.
0
1, 1, 3, 7, 28, 77, 328, 1032, 4561, 15405, 69769, 247393, 1138185, 4185511, 19468674, 73609812, 345276471, 1334269657, 6299899585, 24782227361, 117622225218, 469582616810, 2238340131739, 9048089976912, 43283737012166, 176845107923360, 848544854956430, 3499129672077487, 16833433325704218
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A148752 A148753 A148754 * A148756 A352701 A351771
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved