Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #2 Mar 30 2012 18:54:07
%S 1,1,3,7,19,60,185,555,1841,5956,19505,66820,225634,756816,2642845,
%T 9115115,31500557,111381604,390731927,1366403748,4883389422,
%U 17318135888,61435889157,221076079788,791460173438,2827876747472,10242954731014,36908672701072,132984499210420,483857249063680,1754050251660429
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 1, 0), (0, 0, -1), (1, 0, 1)}
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[i, j, 1 + k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008