login
A148478
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (0, 0, 1), (1, -1, 0), (1, -1, 1), (1, 1, -1)}.
0
1, 1, 2, 6, 20, 69, 248, 929, 3593, 14235, 57459, 235273, 975586, 4091859, 17331431, 74022586, 318434137, 1378696760, 6004079607, 26284438789, 115608994109, 510654253982, 2264354475602, 10076442899221, 44987463494993, 201458045516293, 904663379767250, 4072976292757049, 18381553939082160
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[-1 + i, 1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A331951 A047036 A199248 * A148479 A150124 A045631
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved