login
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 1, 1), (0, 0, 1), (1, -1, 1), (1, 1, -1)}.
0

%I #4 Jan 01 2024 00:53:09

%S 1,1,2,5,16,52,188,673,2528,9448,36232,138642,538502,2089746,8183600,

%T 32039011,126154812,496759140,1963415328,7761746678,30760767292,

%U 121938877154,484214723920,1923302168038,7648666905624,30425224701788,121132809344714,482381656899028,1922197151700130

%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 1, 1), (0, 0, 1), (1, -1, 1), (1, 1, -1)}.

%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.

%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008