login
A148301
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 1, -1), (0, 1, 0), (1, -1, 0)}.
0
1, 1, 2, 5, 13, 37, 114, 365, 1212, 4174, 14744, 53219, 196128, 735061, 2795325, 10775893, 42033257, 165681405, 659428514, 2647465405, 10712775912, 43665811166, 179171486078, 739683634853, 3071114467121, 12818263719383, 53762514030655, 226524701738624, 958521863533685, 4072099385740137
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A243412 A170941 A119495 * A339039 A205544 A149855
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved