login
A148285
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 0), (-1, 1, 0), (0, 0, 1), (1, 0, -1)}.
0
1, 1, 2, 5, 12, 32, 97, 287, 885, 2942, 9626, 32224, 112848, 391780, 1383228, 5015230, 18110192, 66321124, 246631856, 916229990, 3444243002, 13061422067, 49585368476, 190049612386, 732135773261, 2827352116639, 10999281945719, 42927928170854, 168074330026869, 661650153229464, 2610848032152054
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, k, -1 + n] + aux[1 + i, j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A143657 A014326 A148284 * A115523 A176336 A010843
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved