login
A148282
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (0, 1, -1), (1, 0, -1), (1, 1, 0)}.
0
1, 1, 2, 5, 12, 32, 92, 271, 802, 2516, 7892, 25116, 81890, 267202, 886770, 2964251, 9969622, 33847964, 115461276, 396374112, 1367694250, 4740566250, 16504036142, 57686764804, 202361337602, 712238874402, 2514935212810, 8904756497154, 31619392744370, 112552506665706, 401581581753186, 1436138034172283
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, j, 1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A188287 A363240 A148281 * A148283 A218781 A363682
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved