login
A148077
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, 1), (0, 1, -1), (1, 0, 0)}.
0
1, 1, 2, 4, 9, 24, 60, 171, 482, 1397, 4253, 12734, 39807, 124496, 393876, 1271415, 4091866, 13406172, 44050521, 145678352, 486558215, 1626299970, 5484672863, 18549475207, 63002376085, 215196629904, 736195482482, 2531826112640, 8727353541961, 30175242044617, 104712273647938, 363933649177806, 1269272249934532
OFFSET
0,3
LINKS
A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A005669 A038664 A261367 * A148078 A093156 A148079
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved