login
A147988
Coefficients of denominator polynomials Q(n,x) associated with reciprocation.
5
1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 4, 0, 1, 0, 1, 0, 11, 0, 45, 0, 88, 0, 88, 0, 45, 0, 11, 0, 1, 0, 1, 0, 26, 0, 293, 0, 1896, 0, 7866, 0, 22122, 0, 43488, 0, 60753, 0, 60753, 0, 43488, 0, 22122, 0, 7866, 0, 1896, 0, 293, 0, 26, 0, 1, 0, 1, 0, 57, 0, 1512, 0, 24858, 0, 284578, 0
OFFSET
1,10
COMMENTS
1. Q(n,1)=A073834(n) for n>=1.
2. For n>=3, Q(n)=Q(n,x)=i*T(n,i*x), where T(n) is the polynomial at A147986.
Thus all the zeros of Q(n,x), for n>=2, are nonreal.
LINKS
Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
FORMULA
The basic idea is to iterate the reciprocation-sum mapping x/y -> x/y+y/x.
Let x be an indeterminate, P(1)=x, Q(1)=1 and for n>1, define P(n)=P(n-1)^2+Q(n-1)^2 and Q(n)=P(n-1)*Q(n-1), so that P(n)/Q(n)=P(n-1)/Q(n-1)-Q(n-1)/P(n-1).
EXAMPLE
Q(1) = 1
Q(2) = x
Q(3) = x^3+x
Q(4) = x^7+4*x^5+4*x^3+1
so that, as an array, the sequence begins with:
1
1 0
1 0 1 0
1 0 4 0 4 0 1
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Nov 24 2008
STATUS
approved