OFFSET
0,2
COMMENTS
6th binomial transform of A077957. Binomial transform of A083880. Inverse binomial transform of A147958. - Philippe Deléham, Nov 30 2008
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (12,-34).
FORMULA
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 12*a(n-1) - 34*a(n-2), n > 1; a(0)=1, a(1)=6.
G.f.: (1 - 6*x)/(1 - 12*x + 34*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*6^(2k)*2^(n-k))/6^n. (End)
E.g.f.: exp(6*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017
MATHEMATICA
LinearRecurrence[{12, -34}, {1, 6}, 50] (* G. C. Greubel, Aug 17 2018 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r2>:=NumberField(x^2-2); S:=[ ((6+r2)^n+(6-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
(PARI) my(x='x+O('x^50)); Vec((1-6*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)blogspot.com), Nov 17 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008
STATUS
approved