|
|
A147875
|
|
Second heptagonal numbers: a(n) = n*(5*n+3)/2.
|
|
31
|
|
|
0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Zero followed by partial sums of A016897.
Apparently = every 2nd term of A111710 and A085787.
Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13,... and the line from 4, in the direction 4, 27,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
G.f.: x*(4+x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} A016897(k).
a(n) - a(n-1) = 5*n -1. - Vincenzo Librandi, Nov 26 2010
G.f.: U(0) where U(k)= 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
E.g.f.: U(0) where U(k)= 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013
a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013
a(0)=0, a(1)=4, a(2)=13, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 15 2013
Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: x*(8 + 5*x)*exp(x)/2.
Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)
a(n) = A000566(-n) for all n in Z. - Michael Somos, Jan 25 2019
|
|
EXAMPLE
|
G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - Michael Somos, Jan 25 2019
|
|
MATHEMATICA
|
Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
|
|
PROG
|
(PARI) a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
(MAGMA) [n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
(Sage) [n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> n*(5*n+3)/2) # G. C. Greubel, Jul 04 2019
|
|
CROSSREFS
|
Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).
Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.
Cf. A000566.
Sequence in context: A304946 A316616 A119652 * A321988 A108753 A024970
Adjacent sequences: A147872 A147873 A147874 * A147876 A147877 A147878
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Nov 16 2008
|
|
EXTENSIONS
|
Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008
New name from Bruno Berselli, Jan 13 2011
|
|
STATUS
|
approved
|
|
|
|