login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147875 Second heptagonal numbers: a(n) = n*(5*n+3)/2. 24
0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Zero followed by partial sums of A016897.

Apparently = every 2nd term of A111710 and A085787.

Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13,... and the line from 4, in the direction 4, 27,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(x+4)/(1-x)^3.

a(n) = Sum_{k=0..n-1} A016897(k).

a(n)-a(n-1) = 5*n-1. - Vincenzo Librandi, Nov 26 2010

G.f.: U(0) where U(k)= 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012

E.g.f.: U(0) where U(k)= 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012

a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013

a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013

a(0)=0, a(1)=4, a(2)=13, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, May 15 2013

Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016

a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016

From Ilya Gutkovskiy, Jul 01 2016: (Start)

E.g.f.: x*(8 + 5*x)*exp(x)/2.

Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)

MATHEMATICA

Table[(n (5 n + 3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)

PROG

(PARI) a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).

Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.

Sequence in context: A189581 A206804 A119652 * A108753 A024970 A079430

Adjacent sequences:  A147872 A147873 A147874 * A147876 A147877 A147878

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Nov 16 2008

EXTENSIONS

Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008

New name from Bruno Berselli, Jan 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 16:28 EST 2018. Contains 299356 sequences. (Running on oeis4.)