This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147859 Chromatic polynomial pi_n(z) of the helm graph H_n evaluated at z=n. 1
 0, 0, 0, 5832, 1228800, 384375000, 153080202240, 77461492681776, 48745516577587200, 37439062705187626320, 34519165560000000000000, 37661140521028611405206520, 48018043198541202818460549120, 70773783408692477397888505288296, 119443378434420330312430518726819840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The helm graph H_n is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle. LINKS J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6. Eric W. Weisstein, Helm Graph FORMULA Pi_n(z) = z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n); a(n) = Pi_n(n). EXAMPLE a(3) = 3 * ((1 - 3)^3 * (3 - 2) + (3 - 2)^3 * (3 - 1)^3) = 0. MAPLE P := proc(n, z) z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n) ; end: A147859 := proc(n) P(n, n) ; end: for n from 1 to 15 do printf("%d, ", A147859(n)) ; od: # R. J. Mathar, Jan 22 2009 CROSSREFS Sequence in context: A264887 A251189 A269185 * A269151 A269213 A035903 Adjacent sequences:  A147856 A147857 A147858 * A147860 A147861 A147862 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Nov 16 2008 EXTENSIONS Corrected parentheses, definition and values R. J. Mathar, Jan 22 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 17:39 EDT 2019. Contains 323534 sequences. (Running on oeis4.)