This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147810 Half the number of divisors of n^2+1. 4
 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 2, 1, 4, 3, 2, 1, 4, 2, 4, 1, 2, 1, 4, 2, 2, 2, 4, 3, 4, 2, 2, 1, 4, 3, 2, 1, 3, 2, 6, 2, 2, 2, 8, 2, 2, 2, 2, 2, 4, 1, 4, 1, 8, 2, 2, 2, 2, 2, 4, 2, 2, 1, 4, 4, 2, 3, 2, 4, 8, 1, 4, 2, 4, 2, 2, 2, 4, 3, 8, 1, 2, 2, 4, 2, 4, 1, 4, 2, 6, 1, 2, 2, 4, 4, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For any n>0, n^2+1 cannot be a square and thus has an even number of divisors which always include 1 and n^2+1, therefore a(n) is always a positive integer. Also number of ways to write n^2+1 as n^2+1 = x*y with 1 <= x <= y. - Michel Lagneau, Mar 10 2014 Also number of ways to write arctan(1/n) = arctan(1/x)+arctan(1/y), for integral 0 < n < x < y. - Matthijs Coster, Dec 09 2014 LINKS FORMULA a(n) = A000005(A002522(n))/2 = A147809(n)+1. MAPLE with(numtheory); A147810:=n->tau(n^2+1)/2; seq(A147810(n), n=1..100); # Wesley Ivan Hurt, Mar 10 2014 MATHEMATICA Table[c=0; Do[If[i<=j && i*j==n^2+1, c++], {i, t=Divisors[n^2+1]}, {j, t}]; c, {n, 100}] (* Michel Lagneau, Mar 10 2014 *) PROG (PARI) A147810(n)=numdiv(n^2+1)/2 CROSSREFS Cf. A048691. Sequence in context: A251717 A057217 A193330 * A305302 A055181 A325568 Adjacent sequences:  A147807 A147808 A147809 * A147811 A147812 A147813 KEYWORD easy,nonn AUTHOR M. F. Hasler, Dec 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:57 EDT 2019. Contains 323597 sequences. (Running on oeis4.)