login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147649 Binary prejudiced single Sierpinski modulo two Pascal shift: Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0]; Mod[If[n > 2, 2*Binomial[n - 2, m - 1]*p(n,m), 0],2]=0. 0
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 6, 8, 6, 1, 1, 7, 16, 16, 7, 1, 1, 8, 19, 26, 19, 8, 1, 1, 9, 31, 45, 45, 31, 9, 1, 1, 10, 34, 86, 90, 86, 34, 10, 1, 1, 11, 50, 126, 196, 196, 126, 50, 11, 1, 1, 12, 53, 148, 266, 322, 266, 148, 53, 12, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are:{1, 2, 4, 12, 22, 48, 82, 172, 352, 768, 1282,...}.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

Prejudice function: p(n,m)=If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; t(n,m)=Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1]*p(n, m), 0].

EXAMPLE

{1}, {1, 1}, {1, 2, 1}, {1, 5, 5, 1}, {1, 6, 8, 6, 1}, {1, 7, 16, 16, 7, 1}, {1, 8, 19, 26, 19, 8, 1}, {1, 9, 31, 45, 45, 31, 9, 1}, {1, 10, 34, 86, 90, 86, 34, 10, 1}, {1, 11, 50, 126, 196, 196, 126, 50, 11, 1}, {1, 12, 53, 148, 266, 322, 266, 148, 53, 12, 1}

MATHEMATICA

p[n_, m_] := If[Mod[Binomial[n - 2, m - 1], 2] == 0, Round[Log[2]]/2, 1]; Table[Table[Binomial[n, m] + If[n > 2, 2*Binomial[n - 2, m - 1], 0], {m, 0, n}], {n, 0, 10}]; Flatten[%]

CROSSREFS

A146986, A146987, A028262

Sequence in context: A222573 A222679 A058676 * A147644 A158188 A176625

Adjacent sequences:  A147646 A147647 A147648 * A147650 A147651 A147652

KEYWORD

nonn,tabl,uned

AUTHOR

Roger L. Bagula, Nov 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 08:33 EST 2019. Contains 329389 sequences. (Running on oeis4.)