login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147599 Expansion of Prod((1+x^(4*i-1)),i=1..oo). 23
1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 2, 3, 1, 0, 3, 4, 1, 1, 4, 4, 1, 1, 5, 5, 1, 2, 7, 5, 1, 3, 8, 6, 1, 5, 10, 6, 2, 6, 12, 7, 2, 9, 14, 7, 3, 11, 16, 8, 4, 15, 19, 8, 6, 18, 21, 9, 8, 23, 24, 10, 11, 27, 27, 11, 14, 34, 30, 12, 19, 39, 33, 14, 24, 47 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,19

COMMENTS

Number of partitions into distinct parts 4*k+3.

Convolution of A147599 and A169975 is A000700. - Vaclav Kotesovec, Jan 18 2017

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

G.f. sum(n>=0, x^(2*n^2+n) / prod(k=1,n, 1-x^(4*k))) - Joerg Arndt, Mar 10 2011.

a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*6^(1/4)*n^(3/4)) * (1 - (3*sqrt(3)/(4*Pi) + Pi/(192*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017

MATHEMATICA

nmax = 200; CoefficientList[Series[Product[(1 + x^(4*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 18 2017 *)

nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 4] == 3, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

CROSSREFS

Cf. A000700, A169975, A170956-A170965.

Cf. A262928, A281243, A281244, A281245.

Sequence in context: A170964 A170965 A284316 * A170969 A170970 A170971

Adjacent sequences:  A147596 A147597 A147598 * A147600 A147601 A147602

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 07:39 EST 2020. Contains 331139 sequences. (Running on oeis4.)