|
|
A147590
|
|
Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n-1 digits 0.
|
|
9
|
|
|
1, 14, 124, 1016, 8176, 65504, 524224, 4194176, 33554176, 268434944, 2147482624, 17179867136, 137438949376, 1099511619584, 8796093005824, 70368744144896, 562949953355776, 4503599627239424, 36028797018701824, 288230376151187456
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the number whose binary representation is A147589(n).
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 1..500
Index entries for linear recurrences with constant coefficients, signature (10,-16).
|
|
FORMULA
|
a(n) = A147537(n)/2.
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 8^n/4 - 2^(n-1) = A083332(2n-2).
a(n) = 10*a(n-1) - 16*a(n-2).
G.f.: x*(1+4*x)/((1-2*x)*(1-8*x)). (End)
From César Aguilera, Jul 26 2019: (Start)
Lim_{n->infinity} a(n)/a(n-1) = 8;
a(n)/a(n-1) = 8 + 6/A083420(n). (End)
E.g.f.: (1/4)*(exp(2*x)*(-2 + exp(6*x)) + 1). - Stefano Spezia, Aug 05 2019
a(n) = A020540(n - 1)/4. - Jon Maiga, Aug 05 2019
|
|
EXAMPLE
|
1_10 is 1_2;
14_10 is 1110_2;
124_10 is 1111100_2;
1016_10 is 1111111000_2.
|
|
MAPLE
|
seq(8^n/4-2^(n-1), n=1..25); # Nathaniel Johnston, Apr 30 2011
|
|
MATHEMATICA
|
LinearRecurrence[{10, -16}, {1, 14}, 30] (* Harvey P. Dale, Oct 10 2014 *)
Table[8^n / 4 - 2^(n - 1), {n, 25}] (* Vincenzo Librandi, Jul 27 2019 *)
|
|
PROG
|
(MAGMA) [8^n/4-2^(n-1): n in [1..25]]; // Vincenzo Librandi, Jul 27 2019
(PARI) vector(25, n, 2^(n-2)*(4^n-2)) \\ G. C. Greubel, Jul 27 2019
(Sage) [2^(n-2)*(4^n-2) for n in (1..25)] # G. C. Greubel, Jul 27 2019
(GAP) List([1..25], n-> 2^(n-2)*(4^n-2)); # G. C. Greubel, Jul 27 2019
|
|
CROSSREFS
|
Cf. A020540, A138118, A147537, A147589.
Sequence in context: A167567 A188411 A125377 * A167602 A212234 A155637
Adjacent sequences: A147587 A147588 A147589 * A147591 A147592 A147593
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Omar E. Pol, Nov 08 2008
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Jul 13 2009
Typo in a(12) corrected by Omar E. Pol, Jul 20 2009
|
|
STATUS
|
approved
|
|
|
|