login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147567 a(n) = a(n-4) - a(n-8). 0
2, 1, 3, 4, 1, 2, -1, 3, -1, 1, -4, -1, -2, -1, -3, -4, -1, -2, 1, -3, 1, -1, 4, 1, 2, 1, 3, 4, 1, 2, -1, 3, -1, 1, -4, -1, -2, -1, -3, -4, -1, -2, 1, -3, 1, -1, 4, 1, 2, 1, 3, 4, 1, 2, -1, 3, -1, 1, -4, -1, -2, -1, -3, -4, -1, -2, 1, -3, 1, -1, 4, 1, 2, 1, 3, 4, 1, 2, -1, 3, -1, 1, -4, -1, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Periodic with period 24. - Joerg Arndt, Apr 11 2013

LINKS

Table of n, a(n) for n=0..84.

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 0, -1).

FORMULA

G.f.: (2+x+3*x^2+4*x^3-x^4+x^5-4*x^6-x^7)/(1-x^4+x^8). - Colin Barker, Apr 11 2013

MATHEMATICA

Clear[M, v, n]; M[0] = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 1}}; M[1] = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, -1, 0, 0}}; v[0] = {2, 1, 3, 4}; v[n_] := v[n] = M[Mod[n, 2]].v[n - 1]; Table[v[n][[1]], {n, 0, 100}]

LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, -1}, {2, 1, 3, 4, 1, 2, -1, 3}, 85] (* Ray Chandler, Aug 27 2015 *)

PROG

(PARI) my(x='x+O('x^85)); Vec((2+x+3*x^2+4*x^3-x^4+x^5-4*x^6-x^7)/(1-x^4+x^8)) \\ G. C. Greubel, Apr 24 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 85); Coefficients(R!( (2+x+ 3*x^2+4*x^3-x^4+x^5-4*x^6-x^7)/(1-x^4+x^8) )); // G. C. Greubel, Apr 24 2019

(Sage) ((2+x+3*x^2+4*x^3-x^4+x^5-4*x^6-x^7)/(1-x^4+x^8)).series(x, 85).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019

CROSSREFS

Sequence in context: A322081 A279396 A161224 * A247045 A084579 A276237

Adjacent sequences:  A147564 A147565 A147566 * A147568 A147569 A147570

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Nov 07 2008

EXTENSIONS

New name from Joerg Arndt, Apr 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)