The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147561 Number of representations of n in the Fibonacci-squared base system. The columns are ..., 64, 25, 9, 4, 1, 1 = ..., 8^2, 5^2, 3^2, 2^2, 1^2, 1^2, i.e., the Fibonacci numbers A000045 squared. The 'digits' are 0, 1 or 2. 1
 2, 3, 2, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5, 3, 2, 3, 5, 5, 4, 5, 7, 8, 5, 4, 5, 8, 7, 5, 4, 5, 5, 3, 2, 3, 5, 5, 3, 2, 2, 3, 3, 4, 5, 5, 4, 3, 3, 2, 2, 3, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note there are two columns labeled 1. LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 Ron Knott, Fibonacci Bases: The Fibonacci^2 Base System EXAMPLE a(2) = 3 since 2 is 02, 20 and 11 using both columns labeled 1; a(10) = 5 because 10 = 9 + 1 with 2 Fib-sq reps 1010, 1001; 10 = 2*4 + 2 with 3 Fib-sq reps 220, 211 and 202; so there are in total 5 Fib-sq representations for 10. PROG first(n) = {my(fib2list = List(), fib2 = 1, t = 1, res = vector(n)); while(fib2 <= n, listput(fib2list, fib2); t++; fib2 = fibonacci(t)^2); for(i=1, 3^#fib2list-1, b = digits(i, 3); b = concat(vector(#fib2list-#b), b); s = sum(i=1, #b, b[i]*fib2list[i]); if(s<=n, res[s]++)); res} \\ David A. Corneth, Jul 24 2017 CROSSREFS Cf. A000045, A007598. Sequence in context: A185049 A186181 A324983 * A210659 A103266 A185150 Adjacent sequences:  A147558 A147559 A147560 * A147562 A147563 A147564 KEYWORD nonn,base,look AUTHOR Ron Knott, Nov 07 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 29 18:25 EDT 2022. Contains 354913 sequences. (Running on oeis4.)