login
a(n) = 4*A046162(n+1).
3

%I #29 May 01 2023 15:01:43

%S 0,4,16,12,64,100,48,196,256,108,400,484,192,676,784,300,1024,1156,

%T 432,1444,1600,588,1936,2116,768,2500,2704,972,3136,3364,1200,3844,

%U 4096,1452,4624,4900,1728,5476,5776,2028,6400,6724,2352,7396,7744,2700,8464

%N a(n) = 4*A046162(n+1).

%H G. C. Greubel, <a href="/A147560/b147560.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = 4*numerator(n^2/(n^2 + 3*n + 3)).

%F Sum_{n>=1} 1/a(n) = 11*Pi^2/216. - _Amiram Eldar_, Aug 14 2022

%F G.f.: 4*x*(1 + 4*x + 3*x^2 + 13*x^3 + 13*x^4 + 3*x^5 + 4*x^6 + x^7)/(1-x^3)^3. - _G. C. Greubel_, Oct 27 2022

%p A046162 := proc(n) (n-1)^2/(n^2+n+1) ; numer(%) ; end proc: A147560 := proc(n) 4*A046162(n+1) ; end proc: seq(A147560(n),n=0..70) ; # _R. J. Mathar_, Dec 15 2009

%t a[n_] := 4 * Numerator[n^2/(n^2 + 3*n + 3)]; Array[a, 50, 0] (* _Amiram Eldar_, Aug 14 2022 *)

%o (Magma) [4*Numerator(n^2/(n^2+3*n+3)): n in [0..70]]; // _G. C. Greubel_, Oct 27 2022

%o (SageMath) [4*numerator(n^2/(n^2 +3*n +3)) for n in range(71)] # _G. C. Greubel_, Oct 27 2022

%Y Companion to A144437.

%Y Cf. A046162.

%Y Cf. A171522. [_R. J. Mathar_, Dec 15 2009]

%K nonn,easy,less

%O 0,2

%A _Paul Curtz_, Nov 07 2008

%E More terms from _R. J. Mathar_, Dec 15 2009