This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147559 Result of using the perfect squares as coefficients in an infinite polynomial series in x and then expressing this series as (1+a(1)x)(1+a(2)x^2)(1+a(3)x^3)... 4
 1, 4, 5, 11, -6, -22, -4, 155, 16, -182, -158, 376, 56, -1456, 680, 23155, -4966, -28674, 6132, 117946, 15792, -415426, -162814, 512550, 333904, -4231332, 235968, 15171332, -5259270, -68578566, 15199212, 736983115, -4403208, -1097465342 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE From the perfect squares, construct the series 1+x+4x^2+9x^3+16x^4+25x^5+... a(1) is always the coefficient of x, here 1. Divide by (1+a(1)x), i.e. here (1+x), to get the quotient (1+a(2)x^2+...), which here gives a(2)=4. Then divide this quotient by (1+a(2)x^2), i.e. here (1+4x^2), to get (1+a(3)x^3+...), giving a(3)=5. MATHEMATICA terms = 34; sol = {a[1] -> 1}; Do[sol = Append[sol, Solve[ SeriesCoefficient[ x*(1+x)/(1-x)^3 - (Product[1+a[k]*x^k, {k, 1, n}] /. sol), {x, 0, n}] == 0][[1, 1]]], {n, 2, terms}]; Array[a, terms] /. sol (* Jean-François Alcover, Jun 20 2017 *) CROSSREFS Cf. A000290. Sequence in context: A074098 A196270 A126069 * A206028 A007429 A064945 Adjacent sequences:  A147556 A147557 A147558 * A147560 A147561 A147562 KEYWORD sign AUTHOR Neil Fernandez, Nov 07 2008 EXTENSIONS Terms from a(11) on corrected by R. J. Mathar, Nov 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.