OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..50
Index entries for linear recurrences with constant coefficients, signature (128405450991,-128405450991,1).
FORMULA
a(n+2) = 128405450990*a(n+1) - a(n) + 6612880725882.
G.f.: 103*x*(51721 + 64202725495*x - 51722*x^2) / ((1-x)*(1 -128405450990*x +x^2)). - Colin Barker, Oct 21 2014
EXAMPLE
a(1) = 5327263 because the first relation is : (5327263 + 103)^3 - 5327263^3 = 93645643^2.
MAPLE
seq(coeff(series(103*x*(51721 +64202725495*x -51722*x^2)/((1-x)*(1 -128405450990*x +x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 10 2020
MATHEMATICA
LinearRecurrence[{128405450991, -128405450991, 1}, {5327263, 684056220943393618, 87836547552751547393253180439}, 20] (* G. C. Greubel, Jan 10 2020 *)
PROG
(PARI) Vec(103*x*(51721+64202725495*x-51722*x^2)/((1-x)*(1-128405450990*x+x^2)) + O(x^20)) \\ Colin Barker, Oct 21 2014
(Magma) I:=[5327263, 684056220943393618, 87836547552751547393253180439]; [n le 3 select I[n] else 128405450991*Self(n-1) - 128405450991*Self(n-2) + Self(n-3): n in [1..20]]; // G. C. Greubel, Jan 10 2020
(Sage)
def A147528_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 103*x*(51721 + 64202725495*x - 51722*x^2) / ((1-x)*(1 -128405450990*x +x^2)) ).list()
a=A147528_list(20); a[1:] # G. C. Greubel, Jan 10 2020
(GAP) a:=[5327263, 684056220943393618, 87836547552751547393253180439];; for n in [4..20] do a[n]:=128405450991*a[n-1] - 128405450991*a[n-2] + a[n-3]; od; a; # G. C. Greubel, Jan 10 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Nov 06 2008
EXTENSIONS
Editing and a(6) from Colin Barker, Oct 21 2014
STATUS
approved