login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146980 Nonsquarefree numbers such that n-1 is prime and n+1 is square. 1
8, 24, 48, 80, 168, 224, 360, 440, 728, 840, 1088, 1224, 1368, 1848, 2208, 2400, 3024, 3720, 3968, 4760, 5040, 5624, 5928, 7920, 8648, 10608, 11448, 13688, 14160, 14640, 16128, 17160, 18224, 19320, 21024, 24024, 25920, 28560, 29928, 31328, 33488 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Also numbers n > 3 such that n-1 is prime and n+1 is square.

Sequence gives values x of fundamental solution (x,y) to Pellian x^2 - D*y^2 = 1, with D = n-1 = A049002, corresponding values y being sqrt(n+1) = A028870. (Substituting back into the Pellian we indeed have n^2 - (n-1)(n+1) = 1.) - Lekraj Beedassy, Feb 23 2019

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

MATHEMATICA

Select[Range[35000], !SquareFreeQ[#] && PrimeQ[#-1] && IntegerQ[Sqrt[#+1] ] &] (* G. C. Greubel, Feb 22 2019 *)

PROG

(MAGMA) [ n: n in [1..35000] | not IsSquarefree(n) and IsPrime(n-1) and IsSquare(n+1) ]; // Klaus Brockhaus, Nov 05 2008

(PARI) list(lim)=my(v=List()); forstep(k=3, sqrtint(lim\1+1), 2, if(isprime(k^2-2), listput(v, k^2-1))); Vec(v) \\ Charles R Greathouse IV, Jun 13 2017

(Sage) [n for n in (1..35000) if not is_squarefree(n) and is_prime(n-1) and is_square(n+1)] # G. C. Greubel, Feb 22 2019

CROSSREFS

Cf. A013929, A049002.

Sequence in context: A244370 A179682 A033996 * A319576 A028612 A068857

Adjacent sequences:  A146977 A146978 A146979 * A146981 A146982 A146983

KEYWORD

nonn

AUTHOR

Giovanni Teofilatto, Nov 04 2008

EXTENSIONS

Extended beyond a(6) by Klaus Brockhaus, Nov 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 11:51 EDT 2019. Contains 326057 sequences. (Running on oeis4.)