login
A146954
A functionally symmetric Polynomial as a triangle of coefficients: p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[(2^m + 2*m + 2)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]].
0
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 26, 26, 26, 1, 1, 69, 62, 62, 69, 1, 1, 206, 159, 148, 159, 206, 1, 1, 679, 453, 371, 371, 453, 679, 1, 1, 2408, 1436, 1016, 902, 1016, 1436, 2408, 1, 1, 8969, 4964, 3092, 2366, 2366, 3092, 4964, 8969, 1, 1, 34442, 18221, 10360, 6866
OFFSET
0,5
COMMENTS
Row sums are:{1, 2, 7, 24, 80, 264, 880, 3008, 10624, 38784, 145664}.
FORMULA
p(x,n)=If[n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[(2^m + 2*m + 2)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).
EXAMPLE
{1}, {1, 1}, {1, 5, 1}, {1, 11, 11, 1}, {1, 26, 26, 26, 1}, {1, 69, 62, 62, 69, 1}, {1, 206, 159, 148, 159, 206, 1}, {1, 679, 453, 371, 371, 453, 679, 1}, {1, 2408, 1436, 1016, 902, 1016, 1436, 2408, 1}, {1, 8969, 4964, 3092, 2366, 2366, 3092, 4964, 8969, 1}, {1, 34442, 18221, 10360, 6866, 5884, 6866, 10360, 18221, 34442, 1}
MATHEMATICA
Clear[p, x, n]; p[x_, n_] = If[ n == 0, 1, (x + 1)^n + 2^(n - 4)*Sum[(2^m + 2*m + 2)*x^m*(1 + x^(n - 2*m)), {m, 1, n - 1}]]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A119307 A296039 A296974 * A174949 A174861 A110522
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 03 2008
STATUS
approved