This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146749 Coefficients pf the Pascal sequence minus the Eulerian numbers: q(x,n)= = (1 - x)^(n + 1)*PolyLog[ -n, x]; p(x,n) = (q(x, n)/x - (x + 1)^(n - 1))/x. 0
 2, 8, 8, 22, 60, 22, 52, 292, 292, 52, 114, 1176, 2396, 1176, 114, 240, 4272, 15584, 15584, 4272, 240, 494, 14580, 88178, 156120, 88178, 14580, 494, 1004, 47804, 455108, 1310228, 1310228, 455108, 47804, 1004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Row sums are:{2, 16, 104, 688, 4976, 40192, 362624, 3628288}. First row elements/column are:A005803;f(n)=2^n - 2n; {2, 8, 22, 52, 114, 240, 494, 1004}. LINKS FORMULA q(x,n)= = (1 - x)^(n + 1)*PolyLog[ -n, x]; p(x,n) = (q(x, n)/x - (x + 1)^(n - 1))/x; t(n,m)=Coefficients(p(x,n)). EXAMPLE {2}, {8, 8}, {22, 60, 22}, {52, 292, 292, 52}, {114, 1176, 2396, 1176, 114}, {240, 4272, 15584, 15584, 4272, 240}, {494, 14580, 88178, 156120, 88178, 14580, 494}, {1004, 47804, 455108, 1310228, 1310228, 455108, 47804, 1004} MATHEMATICA q[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]; p[x_, n_] = (q[x, n]/x - (x + 1)^(n - 1))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 10}]; Flatten[%] CROSSREFS Sequence in context: A269510 A093907 A116471 * A250313 A180825 A230708 Adjacent sequences:  A146746 A146747 A146748 * A146750 A146751 A146752 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)