The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A146501 Period 6: 4,8,7,5,1,2. 6
 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Consider second diagonal of array A070366 (1,5,7,8,4,2,) and differences:b(n)=4,-1,7,5,19,29,67,125=A000079+((-1)^n)*3=A140657(n-1). a(n)=b(n) mod 9. Also reversal A070366(n+4). 1,2,4,5,7,8 particular order. Differences are period 6: 4,-1,-2,-4,1,2=A132954(n+2). Note principal diagonal of array a(n) and successive differences is 4,-1,7,5,19,29=b(n),upon. Terms of the simple continued fraction of 481/(sqrt(548587)-624). Decimal expansion of 488/1001. [From Paolo P. Lava, Feb 17 2009] LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1). FORMULA a(n)=(1/30)*{-(n mod 6)+4*[(n+1) mod 6]+29*[(n+2) mod 6]+19*[(n+3) mod 6]+14*[(n+4) mod 6]-11*[(n+5) mod 6]}, with n>=0 [From Paolo P. Lava, Nov 06 2008] G.f.: (4+4*x-x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)) [From Jaume Oliver Lafont, Aug 30 2009] MATHEMATICA LinearRecurrence[{1, 0, -1, 1}, {4, 8, 7, 5}, 102] (* Ray Chandler, Jul 15 2015 *) CROSSREFS Cf. A029898, A141425, A141430, A146322 Sequence in context: A309824 A309818 A201658 * A197574 A019924 A021209 Adjacent sequences:  A146498 A146499 A146500 * A146502 A146503 A146504 KEYWORD nonn,easy AUTHOR Paul Curtz, Oct 30 2008 EXTENSIONS Extended by Ray Chandler, Jul 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 17:31 EST 2020. Contains 331280 sequences. (Running on oeis4.)